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Abstract
A honeypot is used to attract and monitor attacker activities 

and capture valuable information that can be used to help practice 
good cybersecurity. Predictive modelling of a honeypot system 
based on a Markov decision process (MDP) and a partially observable 
Markov decision process (POMDP) is performed in this paper. Analyses 
over a finite planning horizon and an infinite planning horizon for 
a discounted MDP are respectively conducted. Four methods, includ-
ing value iteration (VI), policy iteration (PI), linear programming (LP), 
and Q-learning, are used in the analyses over an infinite planning 
horizon for the discounted MDP. The results of the various methods 
are compared to evaluate the validity of the created MDP model and 
the parameters in the model. The optimal policy to maximise the to-
tal expected reward of the states of the honeypot system is achieved, 
based on the MDP model employed. In the modelling over an infinite 
planning horizon for the discounted POMDP of the honeypot system, 
the effects of the observation probability of receiving commands, 
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the probability of attacking the honeypot, the probability of the hon-
eypot being disclosed, and transition rewards on the total expected 
reward of the honeypot system are studied.

Keywords

cybersecurity, honeypot, machine learning, Markov decision process, 
partially observable Markov decision process, Q-learning

1.	 Introduction

C ybersecurity is concerned with the privacy and se-
curity of computers or electronic devices, networks, 

and any information that is stored, processed, or exchanged by 
information systems [1]. Parameter design, monitoring, and network 
maintenance are important to network cybersecurity. The detection 
and prevention of attacks are generally more significant than any 
subsequent actions taken after being attacked [2]. It is helpful to ob-
tain as much information as possible from attacks to defend against 
attackers and improve the cybersecurity of information systems [3]. 
A honeypot system can collect information from an attack about 
the attackers and may aid in the practice of robust cybersecurity. 
A honeypot is used to attract attackers and record their activities [4].

Attackers can be attracted to a fake system by a honeypot in the net-
work infrastructure; valuable information can be obtained from them; 
and the information can then be used to improve network security 
[4]. A honeypot constitutes a useful technique or tool to observe the 
spread of malware and the emergence of new exploits. An attacker 
tries to avoid connecting to a honeypot as it can disclose the attacker’s 
tools, methods, and exploits [5]. A honeypot is also a source that can 
be leveraged to build high-quality intelligence against threats, provid-
ing a means for monitoring attacks and discovering zero-day exploits 
[6]. A network honeypot is often used by information security teams 
to measure the threat landscape for the security of their networks 
[7]. One example of a stochastic process method, the MDP, has been 
used for decision-making in cybersecurity. The MDP assumes that 
both defenders and attackers have observable information, although 
this is not true in many applications [8]. In actuality, there may be 
partial observability or an agent's inability to fully observe the state of 
its environment in numerous real situations [9]. In many real-world 
problems, their environmental models are not known. There is a con-
siderable need for reinforcement learning to solve problems where 
agents partially observe the states of their environments (possibly 
due to noise in the observed data). This leaves the outcomes of ac-
tions under uncertainty more dependent on the signal of the current 
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state. The POMDP extends the MDP by permitting a decision-making 
process under uncertain or partial observability [10]. The artificial 
intelligence (AI) world has shown a huge leap recently in the research 
area of the POMDP model [11].

An MDP model for interaction honeypots was created and 
an analytic formula of the gain was derived. The optimal policy was 
decided based on comparing the calculated gain of each policy and 
selecting the one with a maximal gain. The model was then extended 
using a POMDP. One approach to solving the POMDP problem was 
proposed. In this method, the system state was replaced with the 
belief state and the POMDP problem was converted into an MDP 
problem [12]. The efforts in the research of this paper were to fulfil 
predictive modelling of the honeypot system, based on the MDP and 
the POMDP. Various methods and algorithms were used, including VI, 
PI, LP, and Q-learning in the analyses of the discounted MDP over an 
infinite planning horizon. The results of these algorithms were eval-
uated to validate the created MDP model and its parameters. In the 
modelling of the discounted POMDP over an infinite planning horizon, 
the effects of several important parameters on the system’s total 
expected reward were studied. These parameters include the obser-
vation probability of receiving commands, the probability of attack-
ing the honeypot, the probability of the honeypot being disclosed, 
and the transition rewards. The analyses of the MDP and POMDP in 
this paper were conducted using the 𝑅 language and 𝑅 functions. 
This paper is organised as follows: the second section introduces the 
methods of MDP and POMDP; Section 3 presents a created MDP model 
of the system and the parameters in the model; Section 4 shows the 
analyses of the system based on the MDP method; Section 5 presents 
analyses of the system based on the POMDP method, and the final 
section is the conclusion.

2.	 Methods
2.1	 The MDP

The MDP method is one of the most significant methods 
employed in artificial intelligence (especially machine learning). The 
MDP is described using the tuple <𝑆, 𝐴, 𝑇, 𝑅, 𝛾> [13–15]:

•	 𝑆 is the states’ set.
•	 𝐴 is the actions set.
•	 𝑇 is the transition probability from the state 𝑠 to the state 𝑠 ′ (𝑠 

∈ 𝑆, 𝑠′ ∈ 𝑆) after action 𝑎 (𝑎 ∈  𝐴).
•	 𝑅 is an immediate reward after action 𝑎, and
•	 𝛾 (0 < 𝛾 <  1) is the discounted factor.
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An optimal policy is the goal of the MDP that maximises the total 
expected reward. An optimal policy over a finite planning horizon 
maximises the vector of the total expected reward until the horizon 
ends. The total expected reward (discounted) for an infinite planning 
horizon is employed to evaluate the gain of the discounted MDP in 
this paper.

2.2.	 The Algorithms of the MDP

VI, PI, LP, and Q-learning have been the algorithms utilised 
to find an optimal policy for the MDP. Theoretically, the results of the 
four kinds of algorithms should be the same. However, the results 
obtained using the algorithms may potentially differ with a great 
value, or convergence problems may potentially occur during the 
iterative process if the created MDP model is unreasonable, owing 
to unsuitable structure or incorrect model parameters. Thus, all the 
algorithms are employed, and their results are evaluated to validate 
the model constructed in this paper.

VI: An optimal policy for the MDP can be achieved by utilizing VI when 
the planning horizon is finite. In principle, the four algorithms (VI, PI, 
LP, and Q-learning) can be employed to find the optimal policy when 
the planning horizon is infinite. VI utilises the following equation of 
value iterations [16–18] to calculate the total expected reward for 
each state:

𝑉(𝑠)∶= 𝑚𝑎𝑥𝑎 ∑𝑠′ 𝑇(𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉(𝑠′))� (1)

where 𝑇(𝑠, 𝑎, 𝑠′) is the transition probability from state 𝑠 to state 𝑠′ 
after action 𝑎. 𝑅(𝑠, 𝑎, 𝑠′) is the immediate reward of the transition. 
𝑉(𝑠) and 𝑉(𝑠′) are the total expected reward in state 𝑠 and state 𝑠′, 
respectively. When the value difference between two consecutive 
iterative steps is lower than the given tolerance, the iteration will 
be stopped.

PI: A better policy is found using PI, through comparing the current 
policy to the previous one. PI generally begins arbitrarily with an 
initial policy and then policy evaluation and policy improvement are 
followed. The process of iterations continues until the same policy 
is obtained for two successive policy iterations, indicating that the 
optimal policy has been achieved. For each state 𝑠, Equation (2) is 
used for policy evaluation and Equation (3) is used for updating the 
policy (policy improvement) [16, 18].

𝑉(𝑠) ∶= 𝑚𝑎𝑥𝑎 ∑𝑠′ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)(𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝛾𝑉(𝑠′))� (2)
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where 𝜋(𝑠) is an optimal policy of state 𝑠.

𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 (Σ𝑠′ 𝑇 (𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉(𝑠′)))� (3)

LP: Since the MDP can be expressed as a linear program, the LP can 
find a static policy through solving the linear program. The following 
LP formulation [19] is used to find the optimal value function:

Solve
min Σs∀S 𝑉(𝑠)� (4)

𝑉

subject to
𝑉(𝑠) ≥ 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 Σ𝑠′ ∈s 𝑇(𝑠, 𝑎, 𝑠′) 𝑉(𝑠′)� (5)

Q-learning: It is used to achieve the best policy with the greatest 
reward. It is a reinforcement learning method and allows an agent 
to learn the Q-value function that is an optimal action-value func-
tion. Q-learning can also be applied to non-MDP domains [20]. The 
action-value function

𝑄(𝑠, 𝑎) is expressed as follows [21]:

𝑄(𝑠, 𝑎) = Σ𝑠′ 𝑇 (𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉(𝑠′))� (6)

𝑄(𝑠, 𝑎) can be initialised arbitrarily (for example, 𝑄(𝑠, 𝑎) = 0, ∀𝑠 ∈ 𝑆, ∀𝑎 
∈ 𝐴). From state 𝑠 to state 𝑠′, a Q-learning update can be defined as 
follows [21, 22]:

𝑄 (𝑠, 𝑎) := (1 – 𝛽)𝑄(𝑠, 𝑎) + 𝛽 [𝑅(𝑠, 𝑎) + 𝛾max 𝑄 (𝑠′, a)]� (7)

where 𝛽 ∈  (0, 1) represents the learning rate. The best action 𝑎 at 
state 𝑠 can be chosen according to the optimal policy 𝜋(𝑠). The iter-
ative process continues until the final step of episode. The optimal 
policy is described as follows:

𝜋(𝑠) = 𝑎𝑟𝑔 max 𝑄 (𝑠, 𝑎)� (8)

2.3.	 The POMDP

A POMDP can be thought as a generalisation of an MDP, 
permitting state uncertainty in a Markov process [23]. In POMDP ap-
plications, the objective is generally to obtain a decision rule or policy 
to maximise the expected long-term reward [24]. In the POMDP, the 
belief state is a distribution of probabilities over all possible states. 
An optimal action relies only on the current belief state [25].

𝑎

𝑎∈𝐴
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The POMDP was defined as a tuple <𝑆, 𝐴, 𝑇, 𝑅, 𝑂, 𝐵, 𝛾> [26]:

•	 𝑂 = {𝑜1, 𝑜2, …,𝑜k} is an observation set.

•	 𝐵 is a set of conditional observation probabilities 𝐵(𝑜|𝑠′, 𝑎). 𝑠 ′ is 
the new state after the state transition 𝑠 → 𝑠′, 𝑜 ∈ 𝑂.

•	 𝑆, 𝐴, 𝑇, 𝑅, and 𝛾 are the same as those in the tuple of MDP.

After having taken the action a and observing 𝑜, the belief state 
needs to be updated. If 𝑏(𝑠) is the previous belief state, then the new 
belief state [25]) is given by

𝑏′(𝑠′) = 𝛼𝑃(𝑜|𝑠′) ∑𝑠 𝑃(𝑠′|𝑠, 𝑎) 𝑏(𝑠)� (9)

where 𝛼 is a normalizing constant that makes the belief state sum to 1.

The goal of POMDP planning is to obtain a sequence of actions 
{𝑎0, 𝑎2, …,𝑎𝑡} at time steps that maximise the total expected reward [27], 
i.e., we choose actions that give

max 𝐸 [∑ 𝑡=0𝛾t𝑅(𝑠t, 𝑎t)]� (10)

where 𝑠t and 𝑎𝑡 are the state and the action at time 𝑡, respectively.

The optimal policy brings up the greatest expected reward for each 
belief state, which is the solution to the Bellman optimality equation 
through iterations beginning at an initial value function for an initial 
belief state. The equation can be formulated as [12]:

𝑉(𝑏) =max𝑎∈𝐴 [𝑏(𝑠)𝑅(𝑠, 𝑎)+𝛾∑ 𝑜∈O𝑃(𝑜|𝑏,𝑎)𝑉(𝑏′)]� (11)

3.	 The MDP Model of the Honeypot System
3.1	 The Structure of the MDP Model

The honeypot system is a network-attached system that is 
put in place to lure attackers. A botnet is utilised to forward spam, 
steal data, etc. A botmaster keeps a bot online. A honeypot has three 
states [12]:

•	 State 1: Not attacked yet (waiting for an attack to join the 
botnet).

•	 State 2: Compromised (becoming a member of the botnet).
•	 State 3: Disclosed (not the botnet’s member anymore) due 

to the real identity having been discovered or interactions 

∞
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with the botmaster having been lost for an extended period 
of time.

A honeypot can take one of the following actions at each state:

•	 Action 1: Allows a botmaster to compromise the honeypot 
system and to implement commands.

•	 Action 2: Does not allow the botmaster to compromise the 
system.

•	 Action 3: Reinitialised as a new honeypot and reset to the 
initial state.

A model of the honeypot system is established based on the MDP. Fig. 
1 shows the state transitions of the states (1, 2, and 3) resulted from 
each of the actions (Action 1, Action 2, and Action 3).

Figure 1. The state transitions due to each of the three actions: (a) Action 1, (b) 
Action 2, and (c) Action 3.

3.2.	 State Transition Matrix and Reward Matrix

The transitions between the states in the created model of 
the system rely on one of the actions and on two important proba-
bilities [12]. State 1 cannot be transitioned to State 3 directly; State 3 
cannot be transitioned to State 2. The probability of a transition from 
State 3 to State 1 is 0 (under Action 1 or Action 2) or 1 (under Action 
3). The following is a description of the two important probabilities:

1.	 𝑃𝑎: the probability of attacking the honeypot.
2.	 𝑃𝑑: the probability of the honeypot being disclosed.

The benefit and expenses due to the state transitions or self-transi-
tions are as follows [12]:

3

1 2

(a)

3

1 2

(b)

3

1 2

(c)
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1.	 𝐸𝑜: the operation expense due to running, deploying, and 
controlling a honeypot.

2.	 𝐸𝑟: the expense in reinitializing a honeypot.

3.	 𝐸𝑙: the expense in liability when a honeypot operator becomes 
liable for implementing a botmaster’s commands if those 
commands include illicit actions.

4.	 𝐵𝑖: the benefit of information when a honeypot collects an 
attacker’s information regarding techniques, codes, and tools.

The state transition probability matrix 𝑇 and the reward matrix 𝑅 
under each action are formulated as follows:

1.	 𝑇 and 𝑅 under Action 1 are

𝑇𝑇 =
0

0 1 0
0 0 1

1 – 𝑃𝑃𝒂𝒂 𝑃𝑃𝒂𝒂 � (12)

𝑅𝑅 = 0 0
0

0 – 𝐸𝐸0

– 𝐸𝐸0
𝐵𝐵𝒊𝒊 – 𝐸𝐸0 – 𝐸𝐸𝒍𝒍

0

𝐵𝐵𝒊𝒊 – 𝐸𝐸0 � (13)

2.	 𝑇 and 𝑅 under Action 2 are

𝑇𝑇 = 0
0

1 – 𝑃𝑃𝒅𝒅
0

0 0
𝑃𝑃𝒅𝒅
1

1 � (14)

𝑅𝑅 = 0
0

𝐵𝐵𝒊𝒊 – 𝐸𝐸0

0

– 𝐸𝐸0

– 𝐸𝐸0
𝐵𝐵𝒊𝒊 – 𝐸𝐸0

0

0 � (15)

3.	 𝑇 and 𝑅 under Action 3 are

𝑇𝑇 = 1
0

0
0

0 0
0
0

1 � (16)

𝑅𝑅 = 𝐵𝐵𝒊𝒊 – 𝐸𝐸𝒓𝒓
– 𝐸𝐸𝒓𝒓

0
0

0

– 𝐸𝐸𝒓𝒓
0
0

0 	�  (17)
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4.	 Analyses of the Honeypot System 
Based on MDP
4.1	 MDP-based Analyses over an Infinite Planning Horizon

Let 𝑃𝑎= 0.6, 𝑃𝑑= 0.6, 𝐸𝑜= 1, 𝐸𝑟= 2.5, 𝐵𝑖= 16, 𝐸𝑙= 14, and 𝛾 = 0.85. Analyses 
are performed using the 𝑅 language and its functions. By substi-
tuting the data into equations (12–17), the values of 𝑇 and 𝑅 under 
various actions (due to various policies) can be computed:

𝑇 and 𝑅 under Action 1 become

𝑇𝑇 ,=
0
0
1

𝑅𝑅 =
0

0 1 0
0 0 –1

0
0

0.4
1
0

0.6 –1 15

𝑇 and 𝑅 under Action 2 are

𝑇𝑇 ,=
0

0.6
1

𝑅𝑅 =
0

0 15 –17
0 0 –1

0
0

0
0.4
0

0 –1 0

𝑇 and 𝑅 under Action 3 are

𝑇𝑇 ,=
0
0
1

𝑅𝑅 =
0

–18.5 0 0
–2.5 0 0

1
1

1
0
0

0 –2.5 0

Various policies are evaluated, and Tab. 1 shows the result of the 
total expected rewards for states with various policies. For example, 
the policy c (1, 1, 3) indicates that Action 1, Action 1, and Action 3 are 
taken on State 1, State 2, and State 3, respectively. 𝑉1, 𝑉2, and 𝑉3 
represent the total expected reward for State 1, State 2, and State 3, 
respectively.

Table 1. The total expected reward of each state for four various policies (𝜸 = 0.85). 

Policy 𝑐 (1, 1, 2) 𝑐 (1, 1, 3) 𝑐 (1, 2, 3) 𝑐 (2, 1, 3)

𝑽1 18.1818 18.1818 13.4431 -6.6667

𝑽2 6.6667 6.6667 0.5342 6.6667

𝑽3 -6.6667 12.9545 8.9266 -8.1667

The four kinds of algorithms (VI, PI, LP, and Q-learning) can be im-
plemented using the values of 𝑇 and 𝑅 under various actions. These 
algorithms are used in this paper and the optimal policy achieved 
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using the four algorithms is c (1, 1, 3) in each case. The results for the 
total expected rewards for each state are compared to evaluate the 
validity of the MDP model in this paper. The results of the honeypot 
system (based on a discounted MDP with 𝛾 = 0.85) over an infinite 
planning horizon are shown in Tab. 2.

VI consists of solving Bellman’s equation iteratively. Jacob’s algorithm 
and Gauss-Seidel’s algorithm are employed in the VI method respec-
tively, so that there are two variants of VI algorithm employed. In 
Gauss-Seidel’s value iterations, 𝑉(𝑘+1) is used instead of 𝑉(𝑘) when-
ever this value has been calculated; k is the iteration number. In this 
situation, the convergence speed is enhanced. It is also shown that 
its accuracy is improved in comparison to Jacob’s algorithm (Tab. 2.). 
The result of Gauss-Seidel’s value iteration algorithm shows that 
the total expected reward is 18.1818 (the highest value) if the MDP 
starts in state 1 while it is 6.6667 (the lowest value) if the MDP starts 
in state 2. The Q-learning result in Table 2 was obtained when the 
number of iterations was 150,000. The results of the VI (Gauss-Seidel 
algorithm), PI, and LP are the same, and very close to the Q-learning 
result, indicating the MDP model created is valid, and that the model 
parameters are indeed suitable.

Table 2. Analyses of the honeypot system based on various algorithms over an 
infinite planning horizon (𝜸 = 0.85) 

Algorithm 𝑽1 𝑽2 𝑽3

VI ( Jacob algorithm) 17.9622 6.4470 12.7349

VI (Gauss-Seidel algorithm) 18.1818 6.6667 12.9545

PI 18.1818 6.6667 12.9545

LP 18.1818 6.6667 12.9545

Q-learning 18.1699 6.6667 12.9206

4.2.	 The MDP-based Analysis for the Honeypot 

System over a Finite Planning Horizon

The above data regarding probabilities, the benefit, and ex-
penses (i.e., 𝑃𝑎, 𝑃𝑑, 𝐸𝑜, 𝐸𝑟, 𝐵𝑖, and 𝐸𝑙) are also utilised in the analysis of 
the system with the discount 𝛾 = 0.85 over a finite planning horizon 
based on the MDP method. Tab. 3 shows the total expected rewards 
of the three states that were calculated using value iterations over 
a 50-step planning horizon. 𝑉1(𝑛), 𝑉2(𝑛), and 𝑉3(𝑛) are the total ex-
pected reward at step n for State 1, State 2, and State 3, respectively. 
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It is shown that the total expected rewards 𝑉1(𝑛), 𝑉2(𝑛), and 𝑉3(𝑛) are 
very close to 𝑉1, 𝑉2, and 𝑉3 for the infinite planning horizon in Tab. 2 
when epoch 𝑛 ≤ 20.

Table 3. Total expected rewards for three states calculated using value iterations 
over a 50-step planning horizon (𝜸 = 0.85). 

Epoch 𝒏 𝑽1(𝒏) 𝑽2(𝒏) 𝑽3(𝒏)

0 18.1798 6.6647 6.6647 

5 18.1774 6.6622 6.6622 

10 18.1718 6.6567 6.6567 

15 18.1592 6.6441 6.6441 

20 18.1309 6.6158 6.6158 

25 18.0672 6.5520 6.5520 

30 17.9234 6.4083 6.4083 

35 17.5995 6.0843 6.0843 

40 16.8691 5.3542 5.3542 

45 15.1715 3.7086 3.7086 

46 14.5479 3.1866 3.1866 

47 13.6351 2.5725 2.5725 

48 12.0340 1.8500 1.8500 

49 8.6 1.0 1.0 

50 0 0 0 

5.	 Analyses of the Honeypot System 
Based on the POMDP
5.1	 Observations and Observation Probabilities 

in the Honeypot System

The POMDP model of the system is based on the MDP model 
shown in Fig. 1, and observations as well as observation probabilities 
are considered to model uncertainty in the POMDP model. Three 
observations [12] are employed to compute and monitor the system 
belief state:
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•	 Unchanged: The honeypot does not have any observed change, 
indicating it is still in the waiting state (State 1).

•	 Absence: It means an absence of botmasters’ commands after 
the honeypot was compromised. This situation can be due to 
1) the honeypot being detected and disconnected from the 
botnet, or 2) botmasters being busy with other things (for ex-
ample, compromising other machines), leading to uncertainty in 
determining whether the honeypot is in State 2 (compromised) 
or State 3 (disclosed).

•	 Commands: After the honeypot is compromised, it receives the 
command information from a botmaster, indicating that it is not 
disclosed yet and still in State 2.

In State 2, the probability of receiving commands is denoted by 𝑃𝑜𝟷, 
while the probability of absence is denoted by 𝑃𝑜𝟸. Therefore, we 
have the following observation probabilities:

For the honeypot in State 1:
𝑃(Unchanged) = 1, 𝑃(Commands) = 𝑃(Absence) = 0

For the honeypot in State 2:
𝑃(Unchanged) = 0, 𝑃(Commands) =𝑃𝑜𝟷
P(Absence) = 𝑃𝑜𝟸 = 1 − 𝑃𝑜𝟷

For the honeypot in State 3:
𝑃(Unchanged) = 𝑃(Commands) = 0, 𝑃(Absence) = 1

5.2.	 Analyses Based on Various Solution Methods 

of the POMDP over An Infinite Planning Horizon

Analyses over an infinite planning horizon for a discounted 
POMDP of the honeypot system are performed. Let 𝑃𝑎= 0.6, 𝑃𝑑= 0.6, 
𝐸𝑜= 1, 𝐸𝑟= 2.5, 𝐵𝑖= 16, 𝐸𝑙= 14, and 𝛾 = 0.85. The following solution 
methods or algorithms [23, 24, 26–29, 30] are used to solve the 
POMDP problem: Grid, Enumeration, Two Pass, Witness, Incremental 
Pruning, and SARSOP. The total expected reward of the honeypot 
system based on POMDP is denoted by 𝑉𝑡 in this paper. The values 
of 𝑉𝑡 at three different observation probabilities of receiving com-
mands (𝑃𝑜𝟷 = 0.5, 0.6, and 0.7) are computed using various solution 
methods of POMDP. The result of 𝑉𝑡 is shown in Tab. 4. The values 
of Incremental Pruning and SARSOP are very close to the results of 
the other four methods and the results of the four methods are 
the same.
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Table 4. The total expected reward of the honeypot system based on various 
solution methods of POMDP. 

Methods 𝑽𝒕 (𝑷𝒐𝟏 = 0.5) 𝑽𝒕 (𝑷𝒐𝟏 = 0.6) 𝑽𝒕 (𝑷𝒐𝟏 = 0.7)

Grid 9.850447 10.187263 10.449232 

Enumeration 9.850447 10.187263 10.449232 

Two Pass 9.850447 10.187263 10.449232 

Witness 9.850447 10.187263 10.449232 

Incremental Pruning 9.848475 10.185292 10.447260 

SARSOP 9.850403 10.187213 10.449210 

5.3.	 The Analysis for the Honeypot System with Various 

Observation Probabilities of Receiving Commands

The total expected reward 𝑉𝑡 of the honeypot system with var-
ious observation probabilities of receiving commands (𝑃𝑜𝟷) is analysed 
for the discounted POMDP over an infinite planning horizon. Grid is used 
to solve the POMDP problem. It tries to approximate the value function 
over an entire state space according to the estimation for a finite num-
ber of belief states on the chosen grid [31]. The following data are used 
in the analysis: 𝑃𝑎= 0.6, 𝑃𝑑= 0.6, 𝐸𝑜= 1, 𝐸𝑟= 2.5, 𝐵𝑖= 16, 𝐸𝑙= 14, and 𝛾 = 0.85; 
𝑃𝑜1 =  0.1, 0.2, 0.3, …, 0.9. Figure 2 shows that the total expected reward 
𝑉𝑡 of the honeypot system increases as the observation probability 
(𝑃𝑜𝟷) of receiving commands rises. In the following sections of this 
paper, the Grid method is also used in solving the POMDP problem.

Figure 2. The total expected reward 𝑉𝑡 of the honeypot system at various 𝑃𝑜𝟷.

5.4.	 Analyses for the System with Various 𝑷𝒂 and 𝑷𝒅
An analysis for the discounted POMDP with various 𝑃𝑎 over an 

infinite planning horizon is conducted. The following data are utilised: 
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𝑃𝑑= 0.6, 𝐸𝑜= 1, 𝐸𝑟= 2.5, 𝐵𝑖= 16, 𝐸𝑙= 14, and 𝛾 = 0.8 5. The total expected 
reward 𝑉𝑡 of the honeypot system at various 𝑃𝑎 for various 𝑃𝑜𝟷 is 
analysed and the result is shown in Fig. 3. 𝑉𝑡 increases with higher 
values of 𝑃𝑎, although the rate of increase steadily diminishes. The 
increased 𝑃𝑎 provides the honeypot with more opportunities for 
collecting valuable information about attackers. 𝑉𝑡 is larger when 
𝑃𝑜𝟷 is larger.

Figure 3. The  total expected reward 𝑽𝒕 of the honeypot system at various 𝑷𝒂.

Let 𝑃𝑎= 0.6, 𝐸𝑜= 1, 𝐸𝑟= 2.5, 𝐵𝑖= 16, 𝐸𝑙= 14, and 𝛾 = 0.85. The 𝑉𝑡 at various 
𝑃𝑑 for various 𝑃𝑜𝟷 is analysed over an infinite planning horizon, and 
Figure 4 shows the results. 𝑉𝑡 is higher when 𝑃𝑜𝟷 is higher, but the 
value of 𝑉𝑡 when 𝑃𝑜𝟷 = 0.1 is very close to that of 𝑉𝑡 when 𝑃𝑜𝟷 = 0.5 
(if 𝑃𝑑 < 0.5). For 𝑃𝑜𝟷 = 0.1, 𝑉𝑡 falls as 𝑃𝑑 is increased from 0.1 to 0.8 and is 
unchanged when 𝑃𝑑 moves from 0.8 to 0.9; for 𝑃𝑜𝑐 = 0.5, 𝑉𝑡 decreases 
as 𝑃𝑑 is increased from 0.1 to 0.6 and is unchanged as 𝑃𝑑 goes from 
0.6 to 0.9; for 𝑃𝑜𝟷 = 0.9, 𝑉𝑡 declines as 𝑃𝑑 is increased from 0.1 to 0.5, 
though it does not change as 𝑃𝑑 moves from 0.5 to 0.9. There is no 
significant difference in 𝑉𝑡 for 𝑃𝑜𝟷 = 0.5 and 𝑃𝑜𝟷 = 0.9 when 𝑃𝑑 changes 
from 0.5 to 0.9.

Figure 4. The total expected reward 𝑉𝑡 of the honeypot system at various 𝑃𝑑.
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5.5.	 Analyses for the System with Various 

Transition Rewards

Analyses for the honeypot system with various transition 
rewards over an infinite planning horizon are performed. The fol-
lowing data are utilised: 𝑃𝑎= 0.6, 𝑃𝑑= 0.6, 𝐸𝑜= 1, 𝐸𝑟= 2.5, 𝐸𝑙= 14, and 
𝛾 = 0.85. The total expected reward 𝑉𝑡 at various 𝑃𝑎 for various 𝑃𝑜𝟷 
is analysed, and the results are shown in Fig. 5. 𝑉𝑡 initially increases 
slightly (𝐵𝑖 < 14) and then more rapidly (𝐵𝑖 > 14) with the increase of 
𝐵𝑖. 𝑉𝑡 for various 𝑃𝑜𝟷(0.1, 0.5, and 0 .9) is the same when 𝐵𝑖 = 10, 11, and 
12. 𝑉𝑡 is the same for 𝑃𝑜𝟷 = 0.1 and 0 .5 when 𝐵𝑖 = 13. When 𝐵𝑖 > 13, 𝑉𝑡 is 
larger if 𝑃𝑜𝑐 is larger.

Figure 5. The total expected reward 𝑉𝑡 of the honeypot system 𝑉𝑡 at various 𝐵𝑖.

Let 𝑃𝑎= 0.6, 𝑃𝑑= 0.6, 𝐸𝑜= 1, 𝐸𝑟= 2.5, 𝐵𝑖= 16, and 𝛾 = 0.85. The total 
expected reward 𝑉𝑡 at various 𝐸𝑙 for various 𝑃𝑜𝟷 is analysed over an 
infinite planning horizon and Figure 6 shows the results. 𝑉𝑡 decreases 
when 𝐸𝑙 is increased from 12 to 16. 𝑉𝑡 is the same for 𝑃𝑜𝟷 = 0.1 and 
0.5 as 𝐸𝑙 rises from 17 to 20. It is the same for all the three values of 
𝑃𝑜𝟷(0.1, 0.5, and 0 .9) when 𝐸𝑙 goes from 19 to 20.

Figure 6. The total expected reward 𝑉𝑡 of the honeypot system at various 𝐸𝑙.
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6.	 Conclusion
The MDP-based predictive modelling for the honeypot sys-

tem has demonstrated that the model and algorithms in this paper 
are suitable for performing analyses over both a finite planning 
horizon and an infinite planning horizon (for a discounted MDP), and 
that they are effective at finding an optimal policy and maximizing 
the total expected rewards of the states of the honeypot system. The 
results of the total expected reward using Gauss-Seidel’s algorithm 
of VI, PI, and LP are the same, and the result of Q-learning is very 
close to the same result, indicating the MDP model created in this 
paper is valid and that the model parameters are suitable.

In the predictive modelling of the honeypot system based on the 
discounted POMDP over an infinite planning horizon, the total expect-
ed reward 𝑉𝑡 of the honeypot system increases with the increase of 
the observation probability of receiving commands (𝑃𝑜𝟷). It also 
rises as 𝑃𝑎 is increased or 𝐵𝑖 is increased. The increased 𝑃𝑎 leads to 
more opportunities for the honeypot to collect valuable information 
about attackers. As 𝑃𝑑 increases, 𝑉𝑡 declines at first and then levels 
out. As 𝐸𝑙 increases, 𝑉𝑡 decreases by successively smaller amounts 
until it eventually flattens out.
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